Serveur d'exploration sur les mitochondries dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport.

Identifieur interne : 000103 ( Main/Exploration ); précédent : 000102; suivant : 000104

Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport.

Auteurs : Stephan Wagner [Allemagne] ; Janina Steinbeck [Allemagne] ; Philippe Fuchs [Allemagne] ; Sophie Lichtenauer [Allemagne] ; Marlene Els Sser [Allemagne] ; Jos H M. Schippers [Allemagne] ; Thomas Nietzel [Allemagne] ; Cristina Ruberti [Allemagne] ; Olivier Van Aken [Suède] ; Andreas J. Meyer [Allemagne] ; Joost T. Van Dongen [Allemagne] ; Romy R. Schmidt [Allemagne] ; Markus Schwarzl Nder [Allemagne]

Source :

RBID : pubmed:31386759

Descripteurs français

English descriptors

Abstract

Hypoxia regularly occurs during plant development and can be induced by the environment through, for example, flooding. To understand how plant tissue physiology responds to progressing oxygen restriction, we aimed to monitor subcellular physiology in real time and in vivo. We establish a fluorescent protein sensor-based system for multiparametric monitoring of dynamic changes in subcellular physiology of living Arabidopsis thaliana leaves and exemplify its applicability for hypoxia stress. By monitoring cytosolic dynamics of magnesium adenosine 5'-triphosphate, free calcium ion concentration, pH, NAD redox status, and glutathione redox status in parallel, linked to transcriptional and metabolic responses, we generate an integrated picture of the physiological response to progressing hypoxia. We show that the physiological changes are surprisingly robust, even when plant carbon status is modified, as achieved by sucrose feeding or extended night. Inhibition of the mitochondrial respiratory chain causes dynamics of cytosolic physiology that are remarkably similar to those under oxygen depletion, highlighting mitochondrial electron transport as a key determinant of the cellular consequences of hypoxia beyond the organelle. A broadly applicable system for parallel in vivo sensing of plant stress physiology is established to map out the physiological context under which both mitochondrial retrograde signalling and low oxygen signalling occur, indicating shared upstream stimuli.

DOI: 10.1111/nph.16093
PubMed: 31386759


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport.</title>
<author>
<name sortKey="Wagner, Stephan" sort="Wagner, Stephan" uniqKey="Wagner S" first="Stephan" last="Wagner">Stephan Wagner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829, Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829, Cologne</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steinbeck, Janina" sort="Steinbeck, Janina" uniqKey="Steinbeck J" first="Janina" last="Steinbeck">Janina Steinbeck</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fuchs, Philippe" sort="Fuchs, Philippe" uniqKey="Fuchs P" first="Philippe" last="Fuchs">Philippe Fuchs</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lichtenauer, Sophie" sort="Lichtenauer, Sophie" uniqKey="Lichtenauer S" first="Sophie" last="Lichtenauer">Sophie Lichtenauer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Els Sser, Marlene" sort="Els Sser, Marlene" uniqKey="Els Sser M" first="Marlene" last="Els Sser">Marlene Els Sser</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schippers, Jos H M" sort="Schippers, Jos H M" uniqKey="Schippers J" first="Jos H M" last="Schippers">Jos H M. Schippers</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Corrensstraße 3, D-06466, Seeland</wicri:regionArea>
<wicri:noRegion>06466, Seeland</wicri:noRegion>
<wicri:noRegion>06466, Seeland</wicri:noRegion>
<wicri:noRegion>Seeland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nietzel, Thomas" sort="Nietzel, Thomas" uniqKey="Nietzel T" first="Thomas" last="Nietzel">Thomas Nietzel</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ruberti, Cristina" sort="Ruberti, Cristina" uniqKey="Ruberti C" first="Cristina" last="Ruberti">Cristina Ruberti</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Aken, Olivier" sort="Van Aken, Olivier" uniqKey="Van Aken O" first="Olivier" last="Van Aken">Olivier Van Aken</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62</wicri:regionArea>
<wicri:noRegion>223 62</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Andreas J" sort="Meyer, Andreas J" uniqKey="Meyer A" first="Andreas J" last="Meyer">Andreas J. Meyer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Dongen, Joost T" sort="Van Dongen, Joost T" uniqKey="Van Dongen J" first="Joost T" last="Van Dongen">Joost T. Van Dongen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Romy R" sort="Schmidt, Romy R" uniqKey="Schmidt R" first="Romy R" last="Schmidt">Romy R. Schmidt</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schwarzl Nder, Markus" sort="Schwarzl Nder, Markus" uniqKey="Schwarzl Nder M" first="Markus" last="Schwarzl Nder">Markus Schwarzl Nder</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31386759</idno>
<idno type="pmid">31386759</idno>
<idno type="doi">10.1111/nph.16093</idno>
<idno type="wicri:Area/Main/Corpus">000090</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000090</idno>
<idno type="wicri:Area/Main/Curation">000090</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000090</idno>
<idno type="wicri:Area/Main/Exploration">000090</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport.</title>
<author>
<name sortKey="Wagner, Stephan" sort="Wagner, Stephan" uniqKey="Wagner S" first="Stephan" last="Wagner">Stephan Wagner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829, Cologne, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829, Cologne</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Cologne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steinbeck, Janina" sort="Steinbeck, Janina" uniqKey="Steinbeck J" first="Janina" last="Steinbeck">Janina Steinbeck</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fuchs, Philippe" sort="Fuchs, Philippe" uniqKey="Fuchs P" first="Philippe" last="Fuchs">Philippe Fuchs</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lichtenauer, Sophie" sort="Lichtenauer, Sophie" uniqKey="Lichtenauer S" first="Sophie" last="Lichtenauer">Sophie Lichtenauer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Els Sser, Marlene" sort="Els Sser, Marlene" uniqKey="Els Sser M" first="Marlene" last="Els Sser">Marlene Els Sser</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schippers, Jos H M" sort="Schippers, Jos H M" uniqKey="Schippers J" first="Jos H M" last="Schippers">Jos H M. Schippers</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Corrensstraße 3, D-06466, Seeland</wicri:regionArea>
<wicri:noRegion>06466, Seeland</wicri:noRegion>
<wicri:noRegion>06466, Seeland</wicri:noRegion>
<wicri:noRegion>Seeland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nietzel, Thomas" sort="Nietzel, Thomas" uniqKey="Nietzel T" first="Thomas" last="Nietzel">Thomas Nietzel</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ruberti, Cristina" sort="Ruberti, Cristina" uniqKey="Ruberti C" first="Cristina" last="Ruberti">Cristina Ruberti</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Aken, Olivier" sort="Van Aken, Olivier" uniqKey="Van Aken O" first="Olivier" last="Van Aken">Olivier Van Aken</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62</wicri:regionArea>
<wicri:noRegion>223 62</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Andreas J" sort="Meyer, Andreas J" uniqKey="Meyer A" first="Andreas J" last="Meyer">Andreas J. Meyer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Dongen, Joost T" sort="Van Dongen, Joost T" uniqKey="Van Dongen J" first="Joost T" last="Van Dongen">Joost T. Van Dongen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Romy R" sort="Schmidt, Romy R" uniqKey="Schmidt R" first="Romy R" last="Schmidt">Romy R. Schmidt</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schwarzl Nder, Markus" sort="Schwarzl Nder, Markus" uniqKey="Schwarzl Nder M" first="Markus" last="Schwarzl Nder">Markus Schwarzl Nder</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>Arabidopsis (cytology)</term>
<term>Arabidopsis (metabolism)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Calcium (metabolism)</term>
<term>Carbon (metabolism)</term>
<term>Cytosol (metabolism)</term>
<term>Electron Transport (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Luminescent Proteins (genetics)</term>
<term>Luminescent Proteins (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>NAD (metabolism)</term>
<term>Oxygen (metabolism)</term>
<term>Plant Cells (metabolism)</term>
<term>Plant Leaves (cytology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine triphosphate (métabolisme)</term>
<term>Arabidopsis (cytologie)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Calcium (métabolisme)</term>
<term>Carbone (métabolisme)</term>
<term>Cellules végétales (métabolisme)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Cytosol (métabolisme)</term>
<term>Feuilles de plante (cytologie)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>NAD (métabolisme)</term>
<term>Oxygène (métabolisme)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines luminescentes (génétique)</term>
<term>Protéines luminescentes (métabolisme)</term>
<term>Transport d'électrons (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Luminescent Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>Bacterial Proteins</term>
<term>Calcium</term>
<term>Carbon</term>
<term>Glutathione</term>
<term>Luminescent Proteins</term>
<term>NAD</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines bactériennes</term>
<term>Protéines luminescentes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Cytosol</term>
<term>Mitochondria</term>
<term>Plant Cells</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine triphosphate</term>
<term>Arabidopsis</term>
<term>Calcium</term>
<term>Carbone</term>
<term>Cellules végétales</term>
<term>Cytosol</term>
<term>Feuilles de plante</term>
<term>Glutathion</term>
<term>Mitochondries</term>
<term>NAD</term>
<term>Oxygène</term>
<term>Protéines bactériennes</term>
<term>Protéines luminescentes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electron Transport</term>
<term>Hydrogen-Ion Concentration</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Concentration en ions d'hydrogène</term>
<term>Transport d'électrons</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hypoxia regularly occurs during plant development and can be induced by the environment through, for example, flooding. To understand how plant tissue physiology responds to progressing oxygen restriction, we aimed to monitor subcellular physiology in real time and in vivo. We establish a fluorescent protein sensor-based system for multiparametric monitoring of dynamic changes in subcellular physiology of living Arabidopsis thaliana leaves and exemplify its applicability for hypoxia stress. By monitoring cytosolic dynamics of magnesium adenosine 5'-triphosphate, free calcium ion concentration, pH, NAD redox status, and glutathione redox status in parallel, linked to transcriptional and metabolic responses, we generate an integrated picture of the physiological response to progressing hypoxia. We show that the physiological changes are surprisingly robust, even when plant carbon status is modified, as achieved by sucrose feeding or extended night. Inhibition of the mitochondrial respiratory chain causes dynamics of cytosolic physiology that are remarkably similar to those under oxygen depletion, highlighting mitochondrial electron transport as a key determinant of the cellular consequences of hypoxia beyond the organelle. A broadly applicable system for parallel in vivo sensing of plant stress physiology is established to map out the physiological context under which both mitochondrial retrograde signalling and low oxygen signalling occur, indicating shared upstream stimuli.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31386759</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>224</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport.</ArticleTitle>
<Pagination>
<MedlinePgn>1668-1684</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16093</ELocationID>
<Abstract>
<AbstractText>Hypoxia regularly occurs during plant development and can be induced by the environment through, for example, flooding. To understand how plant tissue physiology responds to progressing oxygen restriction, we aimed to monitor subcellular physiology in real time and in vivo. We establish a fluorescent protein sensor-based system for multiparametric monitoring of dynamic changes in subcellular physiology of living Arabidopsis thaliana leaves and exemplify its applicability for hypoxia stress. By monitoring cytosolic dynamics of magnesium adenosine 5'-triphosphate, free calcium ion concentration, pH, NAD redox status, and glutathione redox status in parallel, linked to transcriptional and metabolic responses, we generate an integrated picture of the physiological response to progressing hypoxia. We show that the physiological changes are surprisingly robust, even when plant carbon status is modified, as achieved by sucrose feeding or extended night. Inhibition of the mitochondrial respiratory chain causes dynamics of cytosolic physiology that are remarkably similar to those under oxygen depletion, highlighting mitochondrial electron transport as a key determinant of the cellular consequences of hypoxia beyond the organelle. A broadly applicable system for parallel in vivo sensing of plant stress physiology is established to map out the physiological context under which both mitochondrial retrograde signalling and low oxygen signalling occur, indicating shared upstream stimuli.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>Stephan</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-5369-7911</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829, Cologne, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steinbeck</LastName>
<ForeName>Janina</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-7793-5053</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fuchs</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">0000-0001-6379-853X</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lichtenauer</LastName>
<ForeName>Sophie</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0003-4525-6555</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Elsässer</LastName>
<ForeName>Marlene</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schippers</LastName>
<ForeName>Jos H M</ForeName>
<Initials>JHM</Initials>
<Identifier Source="ORCID">0000-0001-7934-126X</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nietzel</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0002-1934-1732</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruberti</LastName>
<ForeName>Cristina</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-9013-1412</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Aken</LastName>
<ForeName>Olivier</ForeName>
<Initials>O</Initials>
<Identifier Source="ORCID">0000-0003-4024-968X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meyer</LastName>
<ForeName>Andreas J</ForeName>
<Initials>AJ</Initials>
<Identifier Source="ORCID">0000-0001-8144-4364</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Dongen</LastName>
<ForeName>Joost T</ForeName>
<Initials>JT</Initials>
<Identifier Source="ORCID">0000-0001-7944-9289</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Romy R</ForeName>
<Initials>RR</Initials>
<Identifier Source="ORCID">0000-0002-3395-0673</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schwarzländer</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0003-0796-8308</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008164">Luminescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C054562">yellow fluorescent protein, Bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008164" MajorTopicYN="N">Luminescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059828" MajorTopicYN="N">Plant Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">cytosol</Keyword>
<Keyword MajorTopicYN="Y">genetically encoded fluorescent protein sensors</Keyword>
<Keyword MajorTopicYN="Y">hypoxia stress</Keyword>
<Keyword MajorTopicYN="Y">in vivo sensing</Keyword>
<Keyword MajorTopicYN="Y">mitochondrial electron transport chain</Keyword>
<Keyword MajorTopicYN="Y">retrograde signalling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31386759</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16093</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP. 2011. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metabolism 14: 819-829.</Citation>
</Reference>
<Reference>
<Citation>Aller I, Rouhier N, Meyer AJ. 2013. Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings. Frontiers in Plant Science 4: e506.</Citation>
</Reference>
<Reference>
<Citation>Antonio C, Papke C, Rocha M, Diab H, Limami AM, Obata T, Fernie AR, van Dongen JT. 2016. Regulation of primary metabolism in response to low oxygen availability as revealed by carbon and nitrogen isotope redistribution. Plant Physiology 170: 43-56.</Citation>
</Reference>
<Reference>
<Citation>Behera S, Xu Z, Luoni L, Bonza C, Doccula FG, DeMichelis MI, Morris RJ, Schwarzländer M, Costa A. 2018. Cellular Ca2+ signals generate defined pH signatures in plants. Plant Cell 30: 2704-2719.</Citation>
</Reference>
<Reference>
<Citation>Birk J, Ramming T, Odermatt A, Appenzeller-Herzog C. 2013. Green fluorescent protein-based monitoring of endoplasmic reticulum redox poise. Frontiers in Genetics 4: e108.</Citation>
</Reference>
<Reference>
<Citation>Borisjuk L, Macherel D, Benamar A, Wobus U, Rolletschek H. 2007. Low oxygen sensing and balancing in plant seeds: a role for nitric oxide. New Phytologist 176: 813-823.</Citation>
</Reference>
<Reference>
<Citation>Borisjuk L, Rolletschek H. 2009. The oxygen status of the developing seed. New Phytologist 182: 17-30.</Citation>
</Reference>
<Reference>
<Citation>Clanton TL. 2007. Hypoxia-induced reactive oxygen species formation in skeletal muscle. Journal of Applied Physiology (1985) 102: 2379-2388.</Citation>
</Reference>
<Reference>
<Citation>Considine MJ, Diaz-Vivancos P, Kerchev P, Signorelli S, Agudelo-Romero P, Gibbs DJ, Foyer CH. 2017. Learning to breathe: developmental phase transitions in oxygen status. Trends in Plant Science 22: 140-153.</Citation>
</Reference>
<Reference>
<Citation>Davies DD, Grego S, Kenworthy P. 1974. The control of the production of lactate and ethanol by higher plants. Planta 118: 297-310.</Citation>
</Reference>
<Reference>
<Citation>De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR, Inze A, Ng S, Ivanova A, Rombaut D et al. 2013. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25: 3472-3490.</Citation>
</Reference>
<Reference>
<Citation>De Col V, Fuchs P, Nietzel T, Elsässer M, Voon CP, Candeo A, Seeliger I, Fricker MD, Grefen C, Møller IM et al. 2017. ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. eLife 6: e26770.</Citation>
</Reference>
<Reference>
<Citation>van Dongen JT, Frohlich A, Ramirez-Aguilar SJ, Schauer N, Fernie AR, Erban A, Kopka J, Clark J, Langer A, Geigenberger P. 2009. Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Annals of Botany 103: 269-280.</Citation>
</Reference>
<Reference>
<Citation>van Dongen JT, Licausi F. 2015. Oxygen sensing and signaling. Annual Review of Plant Biology 66: 345-367.</Citation>
</Reference>
<Reference>
<Citation>Ermakova YG, Bilan DS, Matlashov ME, Mishina NM, Markvicheva KN, Subach OM, Subach FV, Bogeski I, Hoth M, Enikolopov G et al. 2014. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nature Communications 5: e5222.</Citation>
</Reference>
<Reference>
<Citation>Fan Y, Chen Z, Ai HW. 2015. Monitoring redox dynamics in living cells with a redox-sensitive red fluorescent protein. Analytical Chemistry 87: 2802-2810.</Citation>
</Reference>
<Reference>
<Citation>Felle HH. 2001. pH: signal and messenger in plant cells. Plant Biology 3: 577-591.</Citation>
</Reference>
<Reference>
<Citation>Felle HH. 2006. Apoplastic pH during low-oxygen stress in barley. Annals of Botany 98: 1085-1093.</Citation>
</Reference>
<Reference>
<Citation>Fendrych M, Van Hautegem T, Van Durme M, Olvera-Carrillo Y, Huysmans M, Karimi M, Lippens S, Guérin CJ, Krebs M, Schumacher K et al. 2014. Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Current Biology 24: 931-940.</Citation>
</Reference>
<Reference>
<Citation>Finkemeier I, Schwarzländer M. 2017. Mitochondrial regulation in the photosynthetic cell: principles and concepts. In J. A. Roberts, ed. Annual Plant Reviews: Plant Mitochondria. Chichester, UK: John Wiley & Sons, 185-226.</Citation>
</Reference>
<Reference>
<Citation>Fukao T, Bailey-Serres J. 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceedings of the National Academy of Sciences, USA 105: 16814-16819.</Citation>
</Reference>
<Reference>
<Citation>Fukao T, Xu K, Ronald PC, Bailey-Serres J. 2006. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18: 2021-2034.</Citation>
</Reference>
<Reference>
<Citation>Geigenberger P. 2003. Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology 6: 247-256.</Citation>
</Reference>
<Reference>
<Citation>Geigenberger P, Fernie AR, Gibon Y, Christ M, Stitt M. 2000. Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biological Chemistry 381: 723-740.</Citation>
</Reference>
<Reference>
<Citation>Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J et al. 2011. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479: 415-418.</Citation>
</Reference>
<Reference>
<Citation>Gonzali S, Loreti E, Cardarelli F, Novi G, Parlanti S, Pucciariello C, Bassolino L, Banti V, Licausi F, Perata P. 2015. Universal stress protein HRU1 mediates ROS homeostasis under anoxia. Nature Plants 1: e15151.</Citation>
</Reference>
<Reference>
<Citation>Gout E, Boisson A, Aubert S, Douce R, Bligny R. 2001. Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorous-31 nuclear magnetic resonance studies. Plant Physiology 125: 912-925.</Citation>
</Reference>
<Reference>
<Citation>Grossmann G, Krebs M, Maizel A, Stahl Y, Vermeer JEM, Ott T. 2018. Green light for quantitative live-cell imaging in plants. Journal of Cell Science 131: jcs209270.</Citation>
</Reference>
<Reference>
<Citation>Gupta KJ, Igamberdiev AU, Manjunatha G, Segu S, Moran JF, Neelawarne B, Bauwe H, Kaiser WM. 2011. The emerging roles of nitric oxide (NO) in plant mitochondria. Plant Science 181: 520-526.</Citation>
</Reference>
<Reference>
<Citation>Hartmann SK, Stockdreher Y, Wandrey G, Hosseinpour Tehrani H, Zambanini T, Meyer AJ, Büchs J, Blank LM, Schwarzländer M, Wierckx N. 2018. Online in vivo monitoring of cytosolic NAD redox dynamics in Ustilago maydis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1859: 1015-1024.</Citation>
</Reference>
<Reference>
<Citation>Heim R, Prasher DC, Tsien RY. 1994. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences, USA 91: 12501-12504.</Citation>
</Reference>
<Reference>
<Citation>Hilleary R, Choi WG, Kim SH, Lim SD, Gilroy S. 2018. Sense and sensibility: the use of fluorescent protein-based genetically encoded biosensors in plants. Current Opinion in Plant Biology 46: 32-38.</Citation>
</Reference>
<Reference>
<Citation>Holdsworth MJ. 2017. First hints of new sensors. Nature Plants 3: 767-768.</Citation>
</Reference>
<Reference>
<Citation>Hoshi Y, Hazeki O, Tamura M. 1993. Oxygen dependence of redox state of copper in cytochrome oxidase in vitro. Journal of Applied Physiology (1985) 74: 1622-1627.</Citation>
</Reference>
<Reference>
<Citation>Hung YP, Albeck JG, Tantama M, Yellen G. 2011. Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metabolism 14: 545-554.</Citation>
</Reference>
<Reference>
<Citation>Igamberdiev AU, Hill RD. 2018. Elevation of cytosolic Ca2+ in response to energy deficiency in plants: the general mechanism of adaptation to low oxygen stress. Biochemical Journal 475: 1411-1425.</Citation>
</Reference>
<Reference>
<Citation>Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, Nagai T, Noji H. 2009. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proceedings of the National Academy of Sciences, USA 106: 15651-15656.</Citation>
</Reference>
<Reference>
<Citation>Inouye S, Tsuji FI. 1994. Evidence for redox forms of the Aequorea green fluorescent protein. FEBS Letters 351: 211-214.</Citation>
</Reference>
<Reference>
<Citation>Joshi NC, Meyer AJ, Bangash SAK, Zheng ZL, Leustek T. 2019. Arabidopsis γ-glutamylcyclotransferase affects glutathione content and root system architecture during sulfur starvation. New Phytologist 221: 1387-1397.</Citation>
</Reference>
<Reference>
<Citation>Keinath NF, Waadt R, Brugman R, Schroeder JI, Grossmann G, Schumacher K, Krebs M. 2015. Live cell imaging with R-GECO1 sheds light on flg22- and chitin-induced transient [Ca2+]cyt patterns in Arabidopsis. Molecular Plant 8: 1188-1200.</Citation>
</Reference>
<Reference>
<Citation>Kelliher T, Walbot V. 2012. Hypoxia triggers meiotic fate acquisition in maize. Science 337: 345-348.</Citation>
</Reference>
<Reference>
<Citation>Kosmacz M, Parlanti S, Schwarzländer M, Kragler F, Licausi F, Van Dongen JT. 2015. The stability and nuclear localization of the transcription factor RAP2.12 are dynamically regulated by oxygen concentration. Plant, Cell & Environment 38: 1094-1103.</Citation>
</Reference>
<Reference>
<Citation>Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K. 2012. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics. The Plant Journal 69: 181-192.</Citation>
</Reference>
<Reference>
<Citation>Kulichikhin KY, Chirkova TV, Fagerstedt KV. 2008. Intracellular pH in rice and wheat root tips under hypoxic and anoxic conditions. Plant Signaling & Behavior 3: 240-242.</Citation>
</Reference>
<Reference>
<Citation>Lee SC, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, Oosumi T, Voesenek LA, Bailey-Serres J. 2011. Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytologist 190: 457-471.</Citation>
</Reference>
<Reference>
<Citation>Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT. 2011a. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479: 419-422.</Citation>
</Reference>
<Reference>
<Citation>Licausi F, van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P. 2010. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. The Plant Journal 62: 302-315.</Citation>
</Reference>
<Reference>
<Citation>Licausi F, Weits DA, Pant BD, Scheible WR, Geigenberger P, van Dongen JT. 2011b. Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. New Phytologist 190: 442-456.</Citation>
</Reference>
<Reference>
<Citation>Littlejohn GR, Gouveia JD, Edner C, Smirnoff N, Love J. 2010. Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll. New Phytologist 186: 1018-1025.</Citation>
</Reference>
<Reference>
<Citation>Littlejohn GR, Mansfield JC, Christmas JT, Witterick E, Fricker MD, Grant MR, Smirnoff N, Everson RM, Moger J, Love J. 2014. An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology. Frontiers in Plant Science 5: e140.</Citation>
</Reference>
<Reference>
<Citation>Loreti E, Valeri MC, Novi G, Perata P. 2018. Gene regulation and survival under hypoxia requires starch availability and metabolism. Plant Physiology 176: 1286-1298.</Citation>
</Reference>
<Reference>
<Citation>Loro G, Drago I, Pozzan T, Schiavo FL, Zottini M, Costa A. 2012. Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells. The Plant Journal 71: 1-13.</Citation>
</Reference>
<Reference>
<Citation>Loro G, Wagner S, Doccula FG, Behera S, Weinl S, Kudla J, Schwarzländer M, Costa A, Zottini M. 2016. Chloroplast-specific in vivo Ca2+ imaging using yellow cameleon fluorescent protein sensors reveals organelle-autonomous Ca2+ signatures in the stroma. Plant Physiology 171: 2317-2330.</Citation>
</Reference>
<Reference>
<Citation>Malmström BG. 1982. Enzymology of oxygen. Annual Review of Biochemistry 51: 21-59.</Citation>
</Reference>
<Reference>
<Citation>Marty L, Siala W, Schwarzländer M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R. 2009. The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106: 9109-9114.</Citation>
</Reference>
<Reference>
<Citation>Masson N, Keeley TP, Giuntoli B, White MD, Puerta ML, Perata P, Hopkinson RJ, Flashman E, Licausi F, Ratcliffe PJ. 2019. Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science 365: 65-69.</Citation>
</Reference>
<Reference>
<Citation>Millar AH, Bergersen FJ, Day DA. 1994. Oxygen affinity of terminal oxidases in soybean mitochondria. Plant Physiology and Biochemistry 32: 847-852.</Citation>
</Reference>
<Reference>
<Citation>Morgan B, Sobotta MC, Dick TP. 2011. Measuring EGSH and H2O2 with roGFP2-based redox probes. Free Radical Biology and Medicine 51: 1943-1951.</Citation>
</Reference>
<Reference>
<Citation>Moseyko N, Feldman LJ. 2001. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant, Cell & Environment 24: 557-563.</Citation>
</Reference>
<Reference>
<Citation>Mustroph A, Barding GA Jr, Kaiser KA, Larive CK, Bailey-Serres J. 2014. Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis with a focus on primary C- and N-metabolism. Plant, Cell & Environment 37: 2366-2380.</Citation>
</Reference>
<Reference>
<Citation>Mustroph A, Lee SC, Oosumi T, Zanetti ME, Yang H, Ma K, Yaghoubi-Masihi A, Fukao T, Bailey-Serres J. 2010. Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiology 152: 1484-1500.</Citation>
</Reference>
<Reference>
<Citation>Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. 2004. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proceedings of the National Academy of Sciences, USA 101: 10554-10559.</Citation>
</Reference>
<Reference>
<Citation>Narsai R, Rocha M, Geigenberger P, Whelan J, van Dongen JT. 2011. Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytologist 190: 472-487.</Citation>
</Reference>
<Reference>
<Citation>Ng S, De Clercq I, Van Aken O, Law SR, Ivanova A, Willems P, Giraud E, Van Breusegem F, Whelan J. 2014. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Molecular Plant 7: 1075-1093.</Citation>
</Reference>
<Reference>
<Citation>Ng S, Giraud E, Duncan O, Law SR, Wang Y, Xu L, Narsai R, Carrie C, Walker H, Day DA et al. 2013a. Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses. Journal of Biological Chemistry 288: 3449-3459.</Citation>
</Reference>
<Reference>
<Citation>Ng S, Ivanova A, Duncan O, Law SR, Van Aken O, De Clercq I, Wang Y, Carrie C, Xu L, Kmiec B et al. 2013b. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25: 3450-3471.</Citation>
</Reference>
<Reference>
<Citation>Nietzel T, Elsässer M, Ruberti C, Steinbeck J, Ugalde JM, Fuchs P, Wagner S, Ostermann L, Moseler A, Lemke P et al. 2019. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics during elicitor-induced oxidative burst in Arabidopsis. New Phytologist 221: 1649-1664.</Citation>
</Reference>
<Reference>
<Citation>Pucciariello C, Parlanti S, Banti V, Novi G, Perata P. 2012. Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. Plant Physiology 159: 184-196.</Citation>
</Reference>
<Reference>
<Citation>Ratcliffe RG. 1999. Intracellular pH regulation in plants under anoxia. In: Egginton S, Taylor EW, Raven JA, eds. Regulation of acid-base status in animals and plants. Cambridge, UK: Cambridge University Press, 193-214.</Citation>
</Reference>
<Reference>
<Citation>Raymond J, Segre D. 2006. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311: 1764-1767.</Citation>
</Reference>
<Reference>
<Citation>Roberts JK, Callis J, Wemmer D, Walbot V, Jardetzky O. 1984. Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proceedings of the National Academy of Sciences, USA 81: 3379-3383.</Citation>
</Reference>
<Reference>
<Citation>Rocha M, Licausi F, Araujo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT. 2010. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiology 152: 1501-1513.</Citation>
</Reference>
<Reference>
<Citation>Rolletschek H, Borisjuk L, Koschorreck M, Wobus U, Weber H. 2002. Legume embryos develop in a hypoxic environment. Journal of Experimental Botany 53: 1099-1107.</Citation>
</Reference>
<Reference>
<Citation>Rosenwasser S, Rot I, Meyer AJ, Feldman L, Jiang K, Friedman H. 2010. A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress. Physiologia Plantarum 138: 493-502.</Citation>
</Reference>
<Reference>
<Citation>Rosenwasser S, Rot I, Sollner E, Meyer AJ, Smith Y, Leviatan N, Fluhr R, Friedman H. 2011. Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiology 156: 185-201.</Citation>
</Reference>
<Reference>
<Citation>Schmidt RR, Fulda M, Paul M, Anders M, Plum F, Weits D, Kosmacz M, Larson T, Graham I, Beemster G et al. 2018a. Oxygen sensing in plants is triggered by an ATP-dependent shift in oleoyl-CoA. Proceedings of the National Academy of Sciences, USA 115: E12101-E12110.</Citation>
</Reference>
<Reference>
<Citation>Schmidt RR, Weits DA, Feulner CFJ, van Dongen JT. 2018b. Oxygen sensing and integrative stress signaling in plants. Plant Physiology 176: 1131-1142.</Citation>
</Reference>
<Reference>
<Citation>Schwarzländer M, Dick TP, Meyer AJ, Morgan B. 2016. Dissecting redox biology using fluorescent protein sensors. Antioxidants & Redox Signaling 24: 680-712.</Citation>
</Reference>
<Reference>
<Citation>Schwarzländer M, Finkemeier I. 2013. Mitochondrial energy and redox signaling in plants. Antioxidants & Redox Signaling 18: 2122-2144.</Citation>
</Reference>
<Reference>
<Citation>Schwarzländer M, Fricker MD, Muller C, Marty L, Brach T, Novak J, Sweetlove LJ, Hell R, Meyer AJ. 2008. Confocal imaging of glutathione redox potential in living plant cells. Journal of Microscopy 231: 299-316.</Citation>
</Reference>
<Reference>
<Citation>Schwarzländer M, König AC, Sweetlove LJ, Finkemeier I. 2012a. The impact of impaired mitochondrial function on retrograde signalling: a meta-analysis of transcriptomic responses. Journal of Experimental Botany 63: 1735-1750.</Citation>
</Reference>
<Reference>
<Citation>Schwarzländer M, Logan DC, Johnston IG, Jones NS, Meyer AJ, Fricker MD, Sweetlove LJ. 2012b. Pulsing of membrane potential in individual mitochondria: a stress-induced mechanism to regulate respiratory bioenergetics in Arabidopsis. Plant Cell 24: 1188-1201.</Citation>
</Reference>
<Reference>
<Citation>Schwarzländer M, Wagner S, Ermakova YG, Belousov VV, Radi R, Beckman JS, Buettner GR, Demaurex N, Duchen MR, Forman HJ et al. 2014. The ‘mitoflash’ probe cpYFP does not respond to superoxide. Nature 514: E12-E14.</Citation>
</Reference>
<Reference>
<Citation>Sedbrook JC, Kronebusch PJ, Borisy GG, Trewavas AJ, Masson PH. 1996. Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia and Arabidopsis thaliana seedlings. Plant Physiology 111: 243-257.</Citation>
</Reference>
<Reference>
<Citation>Sew YS, Millar AH, Stroeher E. 2015. Micro-respiratory measurements in plants. Methods in Molecular Biology 1305: 187-196.</Citation>
</Reference>
<Reference>
<Citation>Shapiguzov A, Vainonen JP, Hunter K, Tossavainen H, Tiwari A, Järvi S, Hellman M, Aarabi F, Alseekh S, Wybouw B et al. 2019. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. eLife 8: e43284.</Citation>
</Reference>
<Reference>
<Citation>Shingaki-Wells R, Millar AH, Whelan J, Narsai R. 2014. What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation. Plant, Cell & Environment 37: 2260-2277.</Citation>
</Reference>
<Reference>
<Citation>Signorelli S, Agudelo-Romero P, Meitha K, Foyer CH, Considine MJ. 2018. Roles for light, energy, and oxygen in the fate of quiescent axillary buds. Plant Physiology 176: 1171-1181.</Citation>
</Reference>
<Reference>
<Citation>Sweetlove LJ, Beard KF, Nunes-Nesi A, Fernie AR, Ratcliffe RG. 2010. Not just a circle: flux modes in the plant TCA cycle. Trends in Plant Science 15: 462-470.</Citation>
</Reference>
<Reference>
<Citation>Tantama M, Hung YP, Yellen G. 2011. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. Journal of the American Chemical Society 133: 10034-10037.</Citation>
</Reference>
<Reference>
<Citation>Tsien RY. 1998. The green fluorescent protein. Annual Review of Biochemistry 67: 509-544.</Citation>
</Reference>
<Reference>
<Citation>Tu BP, Weissman JS. 2004. Oxidative protein folding in eukaryotes: mechanisms and consequences. Journal of Cell Biology 164: 341-346.</Citation>
</Reference>
<Reference>
<Citation>Umbach AL, Zarkovic J, Yu J, Ruckle ME, McIntosh L, Hock JJ, Bingham S, White SJ, George RM, Subbaiah CC et al. 2012. Comparison of intact Arabidopsis thaliana leaf transcript profiles during treatment with inhibitors of mitochondrial electron transport and TCA cycle. PLoS ONE 7: e44339.</Citation>
</Reference>
<Reference>
<Citation>van Veen H, Mustroph A, Barding GA, Vergeer-van Eijk M, Welschen-Evertman RA, Pedersen O, Visser EJ, Larive CK, Pierik R, Bailey-Serres J et al. 2013. Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell 25: 4691-4707.</Citation>
</Reference>
<Reference>
<Citation>Voon CP, Guan X, Sun Y, Sahu A, Chan MN, Gardeström P, Wagner S, Fuchs P, Nietzel T, Versaw WK et al. 2018. ATP compartmentation in plastids and cytosol of Arabidopsis thaliana revealed by fluorescent protein sensing. Proceedings of the National Academy of Sciences, USA 115: E10778-E10787.</Citation>
</Reference>
<Reference>
<Citation>Waadt R, Krebs M, Kudla J, Schumacher K. 2017. Multiparameter imaging of calcium and abscisic acid and high-resolution quantitative calcium measurements using R-GECO1-mTurquoise in Arabidopsis. New Phytologist 216: 303-320.</Citation>
</Reference>
<Reference>
<Citation>Wagner S, Behera S, De Bortoli S, Logan DC, Fuchs P, Carraretto L, Teardo E, Cendron L, Nietzel T, Füssl M et al. 2015. The EF-hand Ca2+ binding protein MICU choreographs mitochondrial Ca2+ dynamics in Arabidopsis. Plant Cell 27: 3190-3212.</Citation>
</Reference>
<Reference>
<Citation>Wagner S, Van Aken O, Elsässer M, Schwarzländer M. 2018. Mitochondrial energy signaling and its role in the low-oxygen stress response of plants. Plant Physiology 176: 1156-1170.</Citation>
</Reference>
<Reference>
<Citation>Walia A, Waadt R, Jones AM. 2018. Genetically encoded biosensors in plants: pathways to discovery. Annual Review of Plant Biology 69: 497-524.</Citation>
</Reference>
<Reference>
<Citation>Weits DA, Giuntoli B, Kosmacz M, Parlanti S, Hubberten HM, Riegler H, Hoefgen R, Perata P, van Dongen JT, Licausi F. 2014. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nature Communications 5: e3425.</Citation>
</Reference>
<Reference>
<Citation>Weits DA, Kunkowska AB, Kamps NCW, Portz KMS, Packbier NK, Nemec Venza Z, Gaillochet C, Lohmann JU, Pedersen O, van Dongen JT et al. 2019. An apical hypoxic niche sets the pace of shoot meristem activity. Nature 569: 714-717.</Citation>
</Reference>
<Reference>
<Citation>Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705-708.</Citation>
</Reference>
<Reference>
<Citation>Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T et al. 2011. An expanded palette of genetically encoded Ca2+ indicators. Science 333: 1888-1891.</Citation>
</Reference>
<Reference>
<Citation>Zou Y, Wang A, Shi M, Chen X, Liu R, Li T, Zhang C, Zhang Z, Zhu L, Ju Z et al. 2018. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nature Protocols 13: 2362-2386.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Suède</li>
</country>
<region>
<li>District de Cologne</li>
<li>District de Münster</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Aix-la-Chapelle</li>
<li>Bonn</li>
<li>Cologne</li>
<li>Münster</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Wagner, Stephan" sort="Wagner, Stephan" uniqKey="Wagner S" first="Stephan" last="Wagner">Stephan Wagner</name>
</region>
<name sortKey="Els Sser, Marlene" sort="Els Sser, Marlene" uniqKey="Els Sser M" first="Marlene" last="Els Sser">Marlene Els Sser</name>
<name sortKey="Els Sser, Marlene" sort="Els Sser, Marlene" uniqKey="Els Sser M" first="Marlene" last="Els Sser">Marlene Els Sser</name>
<name sortKey="Els Sser, Marlene" sort="Els Sser, Marlene" uniqKey="Els Sser M" first="Marlene" last="Els Sser">Marlene Els Sser</name>
<name sortKey="Fuchs, Philippe" sort="Fuchs, Philippe" uniqKey="Fuchs P" first="Philippe" last="Fuchs">Philippe Fuchs</name>
<name sortKey="Fuchs, Philippe" sort="Fuchs, Philippe" uniqKey="Fuchs P" first="Philippe" last="Fuchs">Philippe Fuchs</name>
<name sortKey="Lichtenauer, Sophie" sort="Lichtenauer, Sophie" uniqKey="Lichtenauer S" first="Sophie" last="Lichtenauer">Sophie Lichtenauer</name>
<name sortKey="Meyer, Andreas J" sort="Meyer, Andreas J" uniqKey="Meyer A" first="Andreas J" last="Meyer">Andreas J. Meyer</name>
<name sortKey="Nietzel, Thomas" sort="Nietzel, Thomas" uniqKey="Nietzel T" first="Thomas" last="Nietzel">Thomas Nietzel</name>
<name sortKey="Nietzel, Thomas" sort="Nietzel, Thomas" uniqKey="Nietzel T" first="Thomas" last="Nietzel">Thomas Nietzel</name>
<name sortKey="Ruberti, Cristina" sort="Ruberti, Cristina" uniqKey="Ruberti C" first="Cristina" last="Ruberti">Cristina Ruberti</name>
<name sortKey="Schippers, Jos H M" sort="Schippers, Jos H M" uniqKey="Schippers J" first="Jos H M" last="Schippers">Jos H M. Schippers</name>
<name sortKey="Schippers, Jos H M" sort="Schippers, Jos H M" uniqKey="Schippers J" first="Jos H M" last="Schippers">Jos H M. Schippers</name>
<name sortKey="Schmidt, Romy R" sort="Schmidt, Romy R" uniqKey="Schmidt R" first="Romy R" last="Schmidt">Romy R. Schmidt</name>
<name sortKey="Schwarzl Nder, Markus" sort="Schwarzl Nder, Markus" uniqKey="Schwarzl Nder M" first="Markus" last="Schwarzl Nder">Markus Schwarzl Nder</name>
<name sortKey="Steinbeck, Janina" sort="Steinbeck, Janina" uniqKey="Steinbeck J" first="Janina" last="Steinbeck">Janina Steinbeck</name>
<name sortKey="Van Dongen, Joost T" sort="Van Dongen, Joost T" uniqKey="Van Dongen J" first="Joost T" last="Van Dongen">Joost T. Van Dongen</name>
<name sortKey="Wagner, Stephan" sort="Wagner, Stephan" uniqKey="Wagner S" first="Stephan" last="Wagner">Stephan Wagner</name>
<name sortKey="Wagner, Stephan" sort="Wagner, Stephan" uniqKey="Wagner S" first="Stephan" last="Wagner">Stephan Wagner</name>
</country>
<country name="Suède">
<noRegion>
<name sortKey="Van Aken, Olivier" sort="Van Aken, Olivier" uniqKey="Van Aken O" first="Olivier" last="Van Aken">Olivier Van Aken</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MitoPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000103 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000103 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MitoPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31386759
   |texte=   Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31386759" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MitoPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:18:52 2020. Site generation: Sat Nov 21 12:19:22 2020